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In this paper we study a family of representations of the group g\fj(l, q), the universal
covering group of the group SU(1, ¢), induced by characters of a maximal parabolic subgroup.
These representations can be realized on spaces of homogeneous functions on a cone in Cl+t,
so we call them representations associated with a cone. They are labelled by two complex
parameters o, T.

We determine when these representations Ty, are irreducible and describe completely
the structure of invariant subspaces and irreducible subfactors (composition series) in the
reducible case. We find out all intertwining operators and write down them both in a ” matrix”
and an integral form. We determine when an invariant sesqui-linear form exists for the pair
Ty Toy,m (or their subfactors) and find out all unitarizable representations T, or their
subfactors. There are the following series of unitarizable representations: continuous series
(2 real parameters), complementary series (2 real parameters), several ”thin” series (which are
”long” and ”short”) (1 real parameter), ”discrete” series (discrete infinite set), ”exceptional”
series (discrete infinite set, the set of weights has lower ”dimension”).

The detailed description of these representations is necessary for requirements of harmonic
analysis and quantization on the complex hyperbolic spaces SU(1,q)/U(1,q — 1).

For the groups SU(p,q), the study of representations of class 1 with respect to H =
S({U(p,q—1) xU(1)) = U(p,q — 1) was undertaken in [5]. A description of representations
of SU(p,q),p > 1, of the class w with respect to the same H was given in [8], partially it was
done in [3]. The case of another H was considered in [7] for SU(n,n), H = SL(n,C) - R*.
See also [7] for references.

Remark that for the pair SU(p,q)/U(p,q — 1) the case p = 1 has some peculiarities in
comparing with the case p > 1: another weight lattice, 2 complex parameters against 1
complex and 1 integer.

1 The group SU(1,q) and its universal covering group

The group G = SU(1,q) consists of matrices g € SL(n,C), n = 1 + ¢, preserving the
Hermitian form in C™:
[,9] = =211 + 2275 + -+ + TnTy-
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We shall assume ¢ > 1 (i.e. n > 2). We shall consider that G acts on C" from the right and
so we shall write vectors in the row form. Thus we have

yllg =1,
where I = diag {-1,1,...,1}, the prime denotes matrix transposition. Let us write g € G
in the block form with respect to the partition n =1+ q:
_(a B
g_<7 5) i

so that « is a number.
The Lie algebra g of the group G consists of complex n xn trace zero matrices X satisfying
the condition
XT+IX=0.

Let Herm () denote the space of Hermitian r X r matrices. A matrix X in g has the
following block form (as (1.1)):
_( %€ 7
x=(% L) (12)

where £ € R, ( € Herm (q), £ +tr { =0, n is a row-vector in C9.
Let us consider the two following commuting automorphisms 6 and o of G (for the cor-
responding automorphisms of g we preserve notation § and o):

0(9) = Igl, U(g) = JgJ,

where J = diag {1,...,1,—1}. Notice that both are inner, indeed, for example, 6(g) =
TgT~!, where T = diag {\,—),...,—)}, A = exp (img/n). Let K and H denote the fixed
point subgroups of § and o, and ¢ and h their Lie algebras respectively. The coset spaces
G/K and G/H are semisimple symmetric spaces belonging to the class of complex hyperbolic
spaces. See, for example, [6] in connection with that. The Lie algebra g decomposes into the
direct sums of +1, —1-eigenspaces of 8 and o respectively:

g=t+p=bh+g.

The subgroup K consists of block diagonal matrices

(33)

where |p| = 1 and ¢-det ¢ = 1. It is isomorphic to U(g) and is a maximal compact subgroup
of G. The Lie algebra & consists of block diagonal matrices

X=<%LZ), (1.4)

where u € R, ( € Herm (q), u + tr ¢ = 0. It has one-dimensional centre Z(¢) spanned by

&:%(?_%) (1.5)
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Thus, G/K is a Hermitian symmetric space. The semisimple part #*) = [¢,¥] consists of
matrices (1.4) with u = 0, so that tr { = 0. The algebra £ decomposes into the direct sum

t=Z(e) + €. (1.6)

Let K(®) be the subgroup of K consisting of matrices (1.3) with ¢ = 1 so that det = 1 and
K() is isomorphic to SU(q). Its Lie algebra, is £(),
The subspace p consists of matrices

_(0m
X e < ;':’-I 0 ) I
where 7 is a row in CY.

Similarly the subgroup H consists of block diagonal matrices which are split into blocks
according to the partition n = ¢ + 1. Its Lie algebra h has one-dimensional centre with a
basis diag {i,...,1,—¢qi}. So that G/H is a semi-K&hlerian symmetric space (in terminology
of Berger [1], it means that it has G-invariant complex structure and G-invariant pseudo-
Hermitian metric). The rank of G/H is equal to 1. It means that Cartan subspaces in q have
dimension 1. As this one let us take the subspace a of q with the basis:

Ap = (1.7)

-0 O

0
0
0

o O =

Here and further a matrix 3 x 3 denotes a matrix n x n written in the block form according
to the partition n =1+ (n —2) + 1.
The Lie algebra g decomposes into the direct sum of root spaces of the pair (g, a):

g=9-20+9-a+ 80+ 8a + 92a-

The subspace go is the direct sum m + a where the subalgebra m consists of matrices

iu 0 O
0 w 0 |, (1.8)
0 0 du

where u € R, v € Herm (n — 2), 2u + tr v = 0. We see that m lies in € and is the direct sum
of two commuting subalgebras:
m=mp + my,

where mg consists of matrices (1.8) with u = 0 (so that mg C €(*)) and m; is the one-
dimensional centre RY; of m where

i 0 0
Yo=| 0 (-2/(n-2))E 0 [,
0 0 i

The nilpotent subalgebra 3 = g_q + g—2q corresponding to negative roots consists of
matrices: ‘
it & it
=t =t
& 0 & |,
—it —-& —it
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where t € R, £ is a row in C"2.

Let Y denote the cone [y,y] =0, y # 0. The group G acts on Y by translations: y — yg.
Let S be the submanifold of Y defined by the equation |y;| = 1. It is the direct product of
the circle and the sphere: S = S x §29~1. The group G acts on S as follows:

~ sg
SHHSs=8-g= . 1.9
[ =
In particular, the group K acts by translations: s — sk = sk.
Let Lx be the corresponding action of g:
d
(Lx )= 7| fs-exptX), Xep (1.10)
t=0
In particular, we have
Lx(sg)1 = (sX)1,
Lx|(sg)1] = Re (sX, s), (1.11)

where (z,y) denotes the following Hermitian form on C":
(z,y) = 7171 (1.12)
Let us take as a basic point of S the point
s® = (1,0,...,0,1).

The stabilizer of s® in g for the action (1.9) is mg + a + 3.

Let A, M, My, M1, Z denote the analytic subgroups of G with the Lie algebras a,m, mg, m1,3
respectively. For the action (1.9) the stabilizer of the point s%in G is MyAZ and in K is My,
so that S = G/MpAZ and

Since M; commutes with My, it acts on S from the left:
%% > m18% = s®muk, (1.13)

in fact, it is the multiplication of a vector s by a number exp(iu) if m; = exp uYp.
Introduce on S the coordinate a: .
S1 = ew‘.

Let us take on S the Euclidean measure ds:

ds = dadv, (1.14)

where dv is the Euclidean measure on the unit sphere 524-1 50 that the volume of the whole

S is equal
47"

I'(n—1)’

recall that the volume of the unit sphere in R™ is equal to

vol S =2m lyq =

2rm/2
m = T(m/2) (1.15)
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Under the action (1.9) the measure ds is transformed as follows:
ds = |(sg)1|7% ds. (1.16)

In particular, this measure is invariant with respect to XK. In section 5 we shall need the
following formula of an ”integration by parts”:

/ $(s) (Lxp)(s) ds = 2¢ /5 Re (X, 5) 9(s) (s) ds — /S (Lx¥)(s)- p(s)ds  (L.17)
S

for functions ¢, invariant under the left action of Mj.

Let G denote the universal covering group for the group G. Let m : G — G be the
natural projection. For a subgroup of G we denote by the same letter with widetilde a
corresponding analytic subgroup of G (i.e. having the same Lie algebra). In virtue of their
simple connectedness the subgroups K (3),2, Z, M() of G are isomorphic to the subgroups
KG) A, Z My of G and can be identified with them respectively. We shall assume that.

The centre Z(G) of the group G is isomorphic to Z and is exp 2nZXo, see (1.5). The
kernel of the projection = is the subgroup D = exp 27nZX, of G.

Lemma 1.1 The centre Z(é) contains in the subgroup M of G:
Z(G)c M.
Proof: Let X be an arbitrary element of m, see (1.8). Decompose it according to (1.6):
X =aXy+Y, (1.18)

where Y € €(*). We have a = —(n/q)u and

0 0 0

Y=|0 i+ @u/9gE 0 |.
0 0 iun/q

Let us take u so that a = 2nl, [ € Z, i.e. u = —2rlg/n, then

0 0 0
Y=| 0 sv—(2mil/n)E 0
0 0 —2mil
For this element, we have in G:
1 0 0
expY = | 0 exp (iv)-exp (—2mil/n) 0
0 0 1

We see that expY € Mp. But My = M(), hence expY € M. Apply to (1.18) the map
exp : g = G. We obtain

exp aXp = exp X -exp (-Y). (1.19)
If we take o as above, then both factors at the right hand side of (1.19) belong to M , so the
left hand side belongs to M too. O
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Let us denote § = K/ My=K /Mpy. It follows from the lemma that
K/M = K/M. (1.20)
The Iwasawa type decompositions of G and @ are:
G=AZK, G=AZK=AZK,
i.e. any element g € G and any element g € G can be written as

g = azk = exp tAy - zk (1.21)
G = azk = exp tAg - zk (1.22)
In each of these decompositions the elements a € A are determined by g and g uniquely.

Moreover, if g = 7(g), then the parameter ¢ for both decompositions (1.21), (1.22) is the
same. This parameter can be found as follows. Apply (1.21) to s°:

sPg=e'- %

whence using |s1| = 1 we get

e =(s°g)l

and, therefore, for ¢ from (1.22) we have

e = |(s°7 (@)1 (1.23)

2 Representations associated with the cone

Let 0,7 € C. Define the following characters (one-dimensional representations) of the
subgroups A, K, M AZ:

wy(a) = €%,
wT(E) . eiTu’
Wor(Maz) = wr(M) ws(a)
— eiTu ecrt
where a = exp tAg € A, k =exp X € K with X given by (14), m =exp X € M with X

given by (1.8) (recall M C K). The subgroup M MAZ of G is a maximal parabolic subgroup.
Let T, denote the representation of G induced by the character w,, of M MAZ. Tt acts
on the space D,,T(G) of functions ¢ in C*°(G) satisfying the condition

p(Mazg) = we,r(Maz) ¢(9)

by right translations

To,(9) ©(91) = ¢(919)
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Let us show the realization of Ty,+ on functions on S. For a function ¢ € DU,T(CNJ), let us
consider the following function % on K:

It satisfies the condition B A

Y(mk) = (k)
so, by (1.20), defines a function on K/M. But it is more convenient instead of this function
on K/M to consider the corresponding function on S = K/Mj which is invariant with respect

to the left action of My, see (1.13). Namely, let us consider the following function f on S
defined by

£(5) = f(s°k) = (k) = p(k) wr (k)"

where k = w(k). It satisfies the condition
f(As)=f(s), AeC, |A\=L1 (2.1)

The space of functions f in D(S) (for a manifold M, D(M) denote the Schwartz space
of compactly supported C*°-functions with a usual topology) satisfying (2.1) will be denoted
by V. Thus, D, ,(G) is isomorphic to V. In this realization the representation Ty r looks as
follows: _
wT(kl)
w‘r(k) 7

(2.2)

T @1)6) = 1 (25 ool

where k is an element in K such that s = s%, further, k is an element in K such that
n(k) = k, and at last g = 7(g); the element k; is determined by the Iwasawa decomposition
kg = @151k,

we used (1.23). It can be checked that the right hand side of (2.2) is well-defined, i.e. it does
not depend on the choice of k and k for given s.
It is much more convenient to deal with the representation T, , of the Lie algebra g

corresponding to T, r of the group G (we use the same symbol):

(Lo (X)1)(6) = (ExD)s) + 5 {0+ 76X, 8) + (0 = )s,5X) } F(5), (23)

where X € g, see (1.2), Lx is the operator (1.10), the form (., .) is given by (1.12).
The Hermitian form

(ho 1) = [ £i&TaGYds, (2.4
S
where ds is the measure (1.14) is invariant with respect to the pair Tg ;, T5+ 7
(To,7(X) f1, f2) = —(f1, To~ 7(X) f2); (25)
here and further
oc*=2-2n—o=-2q—o0 (2.6)

(formula (2.5) is proved by means of (1.11), (1.16)).



Becthuk TT'Y, 1.11, BBIn. 1, 2006

3 Decomposition of the space V'

In this section we decompose the space V into irreducible subspaces with respect to the
action of the group K = S(U(1) x U(q)) = U(q) by translations:

R(k)e(s) = p(sk). (3.1)

We follow [5].

First consider the unit sphere So = S?9~! consisting of points (s2,...,s,) € CY, sat-
isfying the condition s332 + ... + 8,3, = 1, see section 1. As it is known [9], the space
D(S,) decomposes into the direct sum of the subspaces H(m), meN={0,1,2,...}. The
subspace #(m) consists of the restrictions to Sz of homogeneous harmonic polynomials in
T2,T2,...,Tn, Ty of degree m with complex coeflicients. Denote by the same symbol H(m)
the space of those polynomials. Let P(r), A(r), A(r) denote the spaces of all, analytic and
antianalytic homogeneous polynomials of degree r respectively. Under the natural action of
Ul(q), the spaces A(r) and A(r) are irreducible, and the space H(m) decomposes into the
subspaces

H(m,v) = [A(m —v) ® A(v)] NH(m),

v =0,1,...,m. Let us denote by D(r),D(r), D(m,v) the corresponding representations of
U(q) on A(r), A(r), H(m,v) respectively.

Lemma 3.1 The representations D(m,v) of the group U(q) are irreducible and pairwise
non-equivalent. The dimension of H(m,v) is equal to

I'm—v+q—1)T(m+q—1)

(m+q—1) I(m—v+1)T(g—1)T(g)

Proof. The highest weights of D(r) and D(r) ) are (r,0,...,0),(0,0,...,—r), respectively.
The highest component D'(m,v) in D(m — v) ® D(v) has the highest weight

(m —,0,...,0,—v). (3.2)
As it is known [9],
P(m) = H(m) + Q- H(m — 2)

where Q = z9T2 + ... + ZpTpn. Therefore,
A(m —v) ® A(v) = H(m,v) + Q- [A(m —v —1) ® A(v —1)]. (3.3)

The highest weight of the second term in the right hand side is (m —v -1, 0,...,0,—v +
1), it is lower than (3.2). Therefore, D'(m,v) C D(m,v). But the dimensions of both
latter representations are equal to each other: one can check this statement calculating these
dimensions by means of (3.3) and the Weyl formula, respectively. Thus, D(m,v) = D'(m,v)
whence D(m,v) is irreducible. The non-equivalence follows from (3.2). O

Lemma 3.2 The restriction of the representations D(m,v) to the group SU(q) are irre-
ducible. For q > 2, they are pairwise non-equivalent; for q = 2, the restrictions with the same
m are equivalent (to the representation with the highest weight (m,0)).
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Indeed, the restriction of D(m,v) to the group SU(q) has the highest weight (m, v, ...,v,0).
g

Lemma 3.3 The space of functions in H(m,v) depending only on s, is one-dimensional.
The normalized by 1 at the point (0,...,0,1) basis function is ¥(m,v; s,), where for m > 2v:

¥(m,v;t) = c(m,v) t™ % F(—v,m —v+q—1;m — 2v + 1; )

and for m < 2v:
P(m,v;t) = p(m,m — v;1),
here F is the Gauss hypergeometric function ([2], Ch. 2),
F'm—v+1)T(g—1)
I'(m—-2v+1)T(m+q—1)

c(m,v) = (=1)"

Proof. Let m > 2v. Then a polynomial ¢(z) in H(m,v) depending only on z, can
be written as 2™~ %" f(a), where f(a) is a polynomial in a = z,Z, of degree v. Since ¢ is

harmonic, f has to satisfy the equation (hypergeometric):

a(l—a)%-{-[m—2v+1—(m—2v+q)a]g§+v(m—v+q—l)f=O

and be regular at a = 0. O
As to the circle S; = S!, see Section 1, the space D(S;) decomposes into the sum of
one-dimensional spaces (1), | € Z, spanned by s!.

Going to S = S1 X Sa, we have got that the space D(S) decomposes into the sum of the
spaces H(l) ® H(m,v). They are irreducible under K = U(q) and even K (s) = SU(q).

Now let us decompose V (see Section 2). The condition (2.1) gives

l+m=2v, (3.4)
whence
l=m (mod 2) (3.5)
and
7| < m. (3.6)

Let us denote by A the set of pairs z = (I, m), I, m € Z, which satisfy (3.5) and (3.6). These
pairs will be called weights. Thus, K-irreducible subspaces which occur in the decomposition
of V can be labelled by weights z € A. We shall write H(z) for H(I) ® H(m,v) with (3.4).
The corresponding representation of K and £ on H(z) will be denoted by R(z).

For each H(z), the subspace of functions in #(z) depending only on s; and sy is one-
dimensional, the basis function ,(s1,s,) normalized by 1 at s%is for I > 0:

l—m l+m+2q—2 i
zpz(sl,sn):sllc(l,m)'gﬁlF( 5 5 el ;l—l—l;slsn) (3.7)

and for [ < 0:
"/’(l;m) (317 Sn) . w(—l;m) (51, Sn) (38)
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where for [ > 0:

T(( +m+2)/2) T(q—1)
TA+ 1) T((—l+m+2¢—2)/2)

c(l,m) = (—1)(m-H/2

4 The structure of representations associated with the cone

For the study of the structure of the representations Ty r (irreducibility, composition
series etc.) we use the restriction to €. Let X € ¢, see (1.4). Then by (2.3) we have

T, +(X) = Lx + iTu. (4.1)

Remember the decomposition (1.6) and consider (4.1) when X belongs to one of two terms
of (1.6).
For X = Xj, see (1.5), we have
iT
T, -(Xo) = Lx, + —ﬁ‘l.
so that

T, +(Xo) = ——(q7 +nl) on H(z). (4.2)

B )

n

For X € ¢), we have Ty -(X) = Lx, so that the restriction of Tg,, of G to the subgroup

K =~ K() > SU(q) does not depend on o, 7 and is the representation R of SU(q) on V by
translations, see (3.1).

Lemma 4.1 The restriction of the representation T, to the Lie subalgebra ¥ decomposes
into the direct sum of irreducible pairwise non-equivalent representations R(z) on the spaces
H(z), see Section 3.

The lemma follows from Lemma 3.2 and (4.2).

Since Ay commutes with m, see (1.7) and (1.8), the operator Ty -(Ao) preserves the space
of functions depending on s; = z,s, = y only. On such functions this operator has the
following expression:

9 22 459 15l Reap) PLEPIVL IS 5 BE8 1 o
Yoz " Yoy "Vaz T oy U \%5z Y5y "8z Yoy
1
+ E{(J+T)Ey+ (0—7)1;@}.

Apply it to 9., see (3.7), (3.8), (3.9). Omitting rather cumbersome calculations with hyper-
geometric functions, we write down the result.
Introduce the following 4 vectors on the plane R2:

er=(1,1), ex=(1,-1), es=(-11), es=(-1,-1)
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and the following 4 linear functions gG; of z:

Bi(o,132) = o—17—1—m, (4.3)
B2(o,752) = o—T—1l+m+2q—2, (4.4)
Bs(o,132) = o+71+1+m, (4.5)
Ba(o,7;2) = o+T+1+m+2q—2. (4.6)

For i = 1,2, 3,4 we shall denote i = 5 — i, so that e; = —e;. Notice that
Bi(o,7;2) + B (0*,752) = —2.

Theorem 4.2 We have
4
Tor(A0) Yz = Y %i(2)Bi(0, 75 2) e, (47)
i=1

where 5,(0.0:

Remark that ;(2) and 73(2) have no zeroes on A (for A, see Section 3) and v2(z) and
v4(2) vanish on the rays [ = m and m = —[ in A, respectively.

We say that the representation Ty , links a weight z with a weight 2’ if there exist X € g
and f € H(z) such that T, (X)f is non-zero and belongs to H(2').

Lemma 4.3 The representation T, ; links z and 2' if and only if 2’ = z+e; with B;(o,T; 2) #
0 for some 1.

The lemma is proved similarly to the corresponding lemma from [5].

Let us call the line §;(o, 7; 2) = 0 on the plane of z = (I,m) a barrier for T, ; if it intersects
with A for ¢ = 1,3 and with AN {m > ||} for 4 = 2,4. The barrier 5; = 0 divides A into
two parts: the set 3; > 0 (the interior of the barrier) and the set §; < 0 (the exterior of the
barrier). If 8; = 0 is a barrier, we shall sometimes speak for brevity: there is the barrier i.
Let us indicate sets of pairs (o, 7) for which there is the barrier ¢ (see Fig. 1):

barrier 1: 0 — 7 =10,2,4,...

barrier 2: ¢ — 7 = —2¢q,—2¢ —2,...

barrier 3: 0 +7=0,2,4,...

barrier 4: 0 + 717 = —2q,—2q9 — 2,...

So we see that for given o, 7 at most 2 barriers may happen.

If 3; = 0 is a barrier then we denote by V; the subspace of V' which is the direct sum of
H(z) with 5; > 0.

The following theorem is a quick implication of Lemma, 4.3.

Theorem 4.4 The subspaces V; are invariant under T, ;. Any irreducible subfactor of Tp ;
is obtained by means of subspaces V; (i.e. any irreducible subfactor is V, or Vi, or V; NV}
factorized over a sum of several Vi). If both o + T and o — 7 do not belong to 2Z, then Ty ;
is irreducible.
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T
2 2 |2
1
1
1
2q tq c
3
3
3
4 4 |a

Fig. 1

In order to see the structure of invariant subspaces, irreducible subfactors, composition
series etc., it is sufficient to draw barriers on the plane of z = (I, m) and to endow each barrier
by a bristle (dashes) oriented inside of the barrier (where 3; > 0), see Fig. 2-5 for the cases
with two barriers (Fig. 4, 5 are given for 0 > 1 — q).

Summarizing, we can write that when there are 2 barriers 7, j the irreducible subfactors

are:
‘/iﬂVjU W/‘/}"a Vj’/Vi’ V/(V1+VJ’)7 (48)

for brevity we write V;/V; instead of V;/(V;NVj), the sum in (4.8) means the arithmetic sum.
In fact, some subfactors indicated in (4.8) can be absent (be trivial). It happens for the cases

11’ and 22': then either the first, or the last one in (4.8) is trivial, and if, moreover, o = —q,
ie.
o=—q, T=¢,9+2,..., (49)
or
oc=—q, T=—¢,—q—2,..., (4.10)

then both are trivial, so that V' decomposes into the direct sum
V=Vi+Vior V=Vo+Vax (4.11)

respectively to (4.9) or (4.10).

The irreducible subspace V; N Vi for ¢ = 1 — ¢ has weights z lying on one ray, i.e. on
coinciding barriers i,4'. Similarly it goes for 0 = —1 — ¢ for the subfactor V/(Vi + Vir). Let
us call such subfactors ezceptional.

The subfactors ViNVa and V/(Va+Vy/) are finite-dimensional. In particular, foro =7 =0
and o* = 7 = 0 they realize the unit representation of G (and G).
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Fig. 2 Fig. 3

0 (/]
Fig. 4 Fig. 5

For the subfactor W, let A(W) denote the set of weights z € A occuring in W. For an
invariant subspace U under T, , denote by U+ its orthogonal complement with respect to
form (2.4). Then A(UY) = A\ A(U) and U+ is invariant under Ty . For a subfactor W =
U/Z of T,, the subspace W* = Z1/U" is a subfactor of Ty~ 7. We have A(W*) = A(W).
Let us call W* the dual subfactor. The dual subfactors for V; and V/V; are V/V;; and Vy
respectively, and for the subfactors (4.8) are V/(Vi +Vj), V;/Vir, Vir [V}, Vi NV respectively.

5 Intertwining operators

A continuous operator A on V is said to intertwine representations T, ; and T, ;, if for any
X € g we have
Toyn(X) A= AT, . (X). (5.1)

A similar definition is given for the case when an operator A maps a subfactor W of Ty, ; in
a subfactor Wy of Ty, r,.

In this section we find out all such operators and show ”the main of them” in an integral
form.

Theorem 5.1 A non-zero intertwining operator A as above exists only in the following cases:
(@) o1=0, T1=1;
() or=0", mm=r.
In the case (a) such an operator is a scalar operator (the multiplication by a number) on
V except of (4.9), (4.10), then A is a scalar operator on each term in (4.11).
In the case (b) for any irreducible subfactor W of T, there ezists a unique up to the factor

non-zero operator mapping W onto the dual subfactor W* and intertwining the subfactor of
To,r on W with the subfactor of T+ , on W*.
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Proof. Let A be a continuous operator on V satisfying (5.1). It follows from Lemma
4.1, that A preserves each #H(z) and its restriction to #(z) is the multiplication by a number
a(z). In particular, we have

A, = a(z)1h,. (5.2)
The numbers a(z) depend on o, 7,01, 7. Take in (5.1) X = X, see (1.5), and use (4.2), we
just obtain that 71 = 7. Now take in (5.1) X = Ay, see (1.7), apply to 1, and use (4.7), then
we obtain relations for a(z):

ﬂi(O’, T3 Z) CL(Z + ei) = ﬂi(ala 75 Z) G,(Z), (53)

¢ =1,2,3,4. These relations have to be co-ordinated, i.e. if one applies to a(z+ e;) the same
relation with ¢ replaced by ', then one has to get a(z) again. It gives the conditions:

Bi(o, 732 + ex) By (0,73 2) a(2) = Bi(01, 752 + exr) By (01,73 2) a(2). (5-4)

Since A # 0, there exists at least one z such that a(z) # 0. Omitting this a(z) from (5.4) and
substituting the explicit expressions (4.3) — (4.6), we obtain that a square trinomial (in o)
whose roots give the sum —2q has the same values at o and o;. Therefore, we have 01 = ¢
or gy = —0 — 2q (= o*).

First let 01 = 0. The relations (5.3) shows that a(z+e;) = a(2) for that z and i for which
Bi(o, 75 2) # 0. This fact together with the same one for i’ gives that a(z) should be constant
along any line z + te; and, therefore, on the whole A, except the case (4.9), (4.10) when two
barriers 11" or 22" split A into two non-linked subsets, so that we have decompositions (4.11).

Now let o1 = o*. Then (5.3) is

Bi(0,7;2) a(z + €;) = Bi(o*,T; 2) a(2). (5.5)

Let W = U/Z be some irreducible subfactor of T,,. Similarly to [4] we can show that
equations (5.5) have a unique up to the factor solution on A(U) which is the intersection
of the interiors of some barriers and, moreover, a(z) = 0 on A(U) N A(Z). This solution
a(z) defines an operator on U vanishing on U N Z so that it maps U/Z onto Z1JUt and
intertwines corresponding subfactors of Tsr and Tp+ ;. Similarly to [4] it is shown that this
operator is continuous. [J

Denote by 2™ where z, A € C, 7 € R, the following function of 2: if z = re’®, r >0, 0<
a < 2w, then

zA,T — ,r/\e'rra.

If z = z(u) is some curve, then

/ /
i 2N = {z’\’T ()\ Re = + 7 Im —z——)} (5.6)
du|,—o z z -
Now let us consider the operator A, on V which is defined by integral:
s t o*,T
Uorne) = [ |2 2] e (5.7
sls1 ta

The integral converges absolutely for Reoc < —n + 1 and is extended to other o, T by the
analyticity.
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Theorem 5.2 The operator A, intertwines T, and To+ 7. On the subspaces H(z) it is the
multiplication by the numbers

F(l—n—a)F(Z—n—(U+T)/2)I‘(2—n—(a—'r)/2).
H I'(—(1/2)Bi(o, 7; 2))

=

a(o,7;2) =4 (=1)" 2" ™" (5.8)

Proof. First we show that A, ; is an intertwining operator. Denote by A(s,t) the kernel
(a function) of this operator.

Let X € g. According to (1.9) we write 3 = s-expuX, t = t - expuX. Denote a =
(sX,s), b= (tX,t), see (1.12). Apply (5.1) with o1 = 0*, 71 = 7 to a function f € V. Then
the left hand side is:

[,

and the right hand side is:

f()dt+;[(a +7)a+ (6" —7)a /Ast o(t) dt (5.9)

/Ast {fo)() 1[(a+'r)b+ (c —1)8] Fi& } (5.10)

By (1.17) the difference between (5.9) and (5.10) is equal to

il

+%((a* +7)a+ (0* —7)a) — %((0 +7)b+ (0 —7) l_))]} f(t)dt (5.11)

A5, %)+ A(s,t) [-2q Re b+

since

d gl - d .
7u e (A(5,t) + A(s, 1)) = = e A(S,1).
By (5.6) we have
4l ey = & [ 17T
du u=0 ( ,t) du u=0 {(Sg)l(tg)l}

= A(s,t){-0*Re(a+b) —irIm(a +b)}.

Substituting it in (5.11), we obtain that the integrand of (5.11) is A(s,t)f(¢) multiplied by

—o0*Re(a+b) —itIm(a + b) — 2qReb + % [(6* +T)a+ (c* —7)a] — —;— [(0+T)b+ (0 —7)b]

which is equal to 0 in virtue of (2.6). It proves that our operator is intertwining.

Therefore, as it was said in the proof of Theorem 5.1, the operator A, , on the subspace
H(z) is the multiplication by a number a(c, 7;2), or a(z) for brevity.

First we calculate a(0). Set in (5.2) A = A, ,, z = 0 (so that ¢, = 1) and take it at
s =% Then

/ —1+%,/5)7 7 dt.
S
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Taking t; = €%, t, = re'® and integrating in other variables, we obtain
27 21 1

a(0) =Qzq—2 / / /(—1 + eiare_iﬂ)a*’T (1 -r2)"2rdrdadB
00

0
2T

1
=2m9q—2 /(—1 + re“’)a* T (1 -39 2 rdrdv.
0

0
The latter integral is calculated by means of the change
re?’ —1 = pe'?
(so that 5 <7< 37) and formula [2] 1.5 (30). Finally we obtain

I'l—n-o)
T((—o —7)/2) (-0 +71)/2)
Now, starting from a(0) and applying the formula
Bi (o*,7;2)
Bi (0,75 2)

(which is (5.3) with o1 = ¢*) first (I +m)/2 times with ¢ =1 and then (m —1/2 times with
i = 3, we obtain (5.8). O

a(0) = 47" ™"

a(z +e;) = a(2)

By means of operator (5.7) we can write down for each irreducible subfactor W = U/Z
an intertwining operator on the dual subfactor W*, see Theorem 5.1. Namely, it is the first
non-zero Laurent, or Taylor, coefficient at A = o of the operator Ay r on U considered as a
function of .

6 Unitarity

A sesqui-linear form H(f, f1) on V is called invariant with respect to the pair To r, Tgy 7y, if
for any X € g and any f, fi € V we have

H(TO',T(X)f7 fl) +H(f,Tal,‘r1(X)fl) = 0. (6'1)

Similar we define the invariance of a form on a pair of invariant subfactors W/U and W1/Uy;
then f € W, f1 € Wy and H(f, f1) =0if f €U or f1 € U1.

Theorem 6.1 A non-zero sesqui-linear form H(f, f1) invariant with respect to the pair
TyryToym o0V or on a pair of invariant subfactors exists only in the following cases:

g

(@) o1=0", T =T,
(b) o1 =0,
In the case (a) the form H coincides up to the factor with the form (2.4) except (4.9) and

(4.10). In the latter cases the form H coincides up to the factor with (2.4) on each of subspaces
(4.11).

T =T.
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In the case (b) the form H can be ezpressed in terms of the form (2.4) and the operator
A intertwining To; and Ty= ; or their subfactors, see Theorem 5.1, namely

H(f, f1) = (Af, f1)-

Proof. First set in (6.1) X = Xp and take f, fi € H(2), then by (4.2) we obtain 7 = 7.
Now let X range €*). Then (6.1) gives that H is invariant with respect to the representation
R of K(®) = SU(q). Therefore the subspaces H(z) are orthogonal with respect to the form
H (for ¢ = 2, one has else to remember Xy and (4.2) and to obtain the orthogonality for
different [).

Therefore, H has a ”diagonal form”:

if both f and f; belong to #(z) and H(f, f1) = 0 if f, f1 belong to different #(z). Further
the study of h(z) goes similarly to the study of a(z) in the proof of Theorem 5.1, so we omit
it. O

Now determine when representations 7T, , or their subfactors are unitarizable. For that
we have to set 01 = o and 71 = 7 in Theorem 6.1 and the form H(f, fi) has to be Hermitian
(H({, f) real) and positively definite. For 7 we obtain 7 € R. For o we obtain two possibilities:
o0 =7* and 0 = 7. In the first case (¢ =7*) we have Re 0 =1 —n = —q. So we obtain a
series of unitarizable representations T, ; of G (or g), the invariant inner product is (2.5), so
that the unitary completion acts on the space of functions f in L?(S) satisfying (2.1). Let
us call this series the continuous series. Representations of this series are irreducible except
the split case (4.9), (4.10).

Let now consider the second case: o =, i.e. 0 € R. First consider the irreducible case.

Theorem 6.2 An irreducible representation T, . with 0,7 € R is unitarizable for points on
the plane (o,7) which fill in one "big” square |o +q|+|7| < q (with the diagonal of length 2q)
and a family of ”small” squares: |o +q| + |7+ (¢ +2k+1)| < 1,k € N (with the diagonal of
length 2). The invariant inner product is c¢(o,7) (Ao f, f1), where Ag; is the operator from
section 5, (.,.) is the form (2.4) and c(o,T) = a(o,7;0)7 .

Let us call the family of representations pointed out in this theorem the complementary
series.

Proof. As well as a(2) in section 5, the factor h(z) from (6.2) satisfies the equation:
Bi(o,7;2) h(z+ej) = Bi(o*,T;2) h(2). (6.3)

So we have to learn when equations (6.3) have a positive solution h(z). For that it is necessary
and sufficient that for each i both functions B;(o, 7; 2) and B;(0*, T; z) considered as functions
of z = (I,m) are of one sign on A. In turn, for that it is necessary and sufficient that both
intervals (o — 7,0* — 7) and (0 + 7,0* + 7) on R contain no points of 2N. Hence we obtain
the cases indicated in the theorem. [J
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Now let us turn to the reducible case: o £ 7 € 2Z. From (6.3) we see that if h(2)
is defined outside some barrier then h(z) = 0 inside of it. Therefore, we have to look
for invariant positively definite Hermitian forms on irreducible subfactors. Omitting rather
tiresome treatments, let us give the result.

Theorem 6.3 Unitarizable representations on irreducible subfactors of Tor form the follow-
ing series:

(a) long thin series (labelled by one parameter ranging a ray on the real line) on
invariant subspaces:

Vi foro—71=0, 0 <0 and foro —7=2,4,6,..., 0< —q+1;

Vs foro+7=0, 0 <0 and foro+7=2,4,6,..., 0< —q+1;
and, in the duality, on invariant factor-spaces:

V/Vy foro* —1=0, c* <0 and for o* —7=2,4,..., o* < —q+1;

V/Va foro*+1=0, c* <0 and foro* +7=2,4,..., o* < —q+1;

(b) short thin series (labelled by one parameter ranging an interval on the real line)
on invariant subspaces:

Vo foro*+1=0,2,4,..., -q—1<0*<7;

Va foro*—1=0,2,4,..., -¢q—1<0o* <—7;
and, in the duality, on invariant factor-spaces:

V/Vs foro+71=0,2,4,..., -¢q—1<0<7;

Vivi foro—1=0,2,4,..., -¢—-1<0<-7;

(c) "discrete” series: these representations correspond to integer even points (0,7 €
27,) lying on the right and the left angles (i.e. o 2 |7| and o* > |7| respectively):

V/(Vi +V3) foro 27|,
and, in the duality,

VonNVy foro* > |7|.

(d) ”exceptional” series: these representations correspond to integer even points
(0,7 € 2Z) at the ends of the thin series (the weights z for each of these representations
lie on a ray), namely, in the right angle (o > |7| ):

onV1/Vs foro=r,

on V3/Vi for o= —r,
in the left angle (0* > ||) (dual to the right angle):

on Va/Vy foro* =T,

on Vy/Va for o* =
in the upper angle (T > |o +4q| +q):

onVoNVs foro=-—q+1,

on V/(Va +V3) for o =—q—1 (dual to the preceding case);
in the lower angle (1 < —|o+q| —q):

onViNVy foro=—q+1,

on V/(Vi + Vi) for o = —q—1 (dual to the preceding case);

___T’

(e) the unit representation — in the right and the left vertez of the big square:
onVinVs foro=0, 7=0,
onV/(Va +Vy) foro*=0, 7=0.
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